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Summary

Before the era of Big Data, macroeconomic, health and other variables had
been consistently predicted using standard sources of information and simple
linear models. Now, the overcapacity to store data has made new sources and
high-frequency information worth capturing. Moreover, the surge of data has
been met with a continuous development of readily available technologies. To
this extent, the present work explores whether a new particular source of in-
formation could potentially help economic, health and other authorities in their
decision-making process. Relevant variables usually have a reporting lag. We
explore whether real-time internet searches could potentially notify authorities of
changes in these variables of interest. Additionally, we explore other non-linear
model alternatives to further increase the benefits of these new predictors. We
also provide a multivariate proof of the well-known fact that, given sufficient
information, a nonparametric approach can estimate any regression function.
Finally, we propose an innovative alternative for estimating the nonparametric
method. This is our main contribution to the statistic’s literature since we find
that this strategy is more suitable for small to medium data sets.
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1 Motivation

The era of Big Data is expected to innovate many aspects of our lives. It promises
to offer user-specific products (both physical and digital) as well as to automate
many of the repetitive tasks that we face on a daily basis. Furthermore, the pop-
ularization of Machine Learning techniques is poised to increase the forecasting
accuracy in many different industries as well as to uncover hidden patterns and
structure in their data bases. Therefore, it is natural to explore how these new
set of techniques and models could influence the research and decision making
for Economic matters.

To provide some context for this Big Data phenomenon it is worth pointing
out that this era is the result of the conjunction of three important circumstances.
First, the cost of storing information has become negligible. Second, we are
facing a datafication process where information from all aspects of our life is
being systematically captured and stored. Finally, computational power has
become inexpensive and therefore highly accessible as well as the technologies to
manipulate and extract information from the data.

In terms of the cost of storing information, the graph below shows the evo-
lution of the cost per GB (Gigabyte) through almost the last 20 years.

As it can be seen, the cost has decreased exponentially to the point of almost
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mitigating the cost-benefit trade-off of opting for how much information to main-
tain. Companies no longer need to decide what summaries of their information
to backlog, they can simply keep it all. Instead of storing the monthly aggregate
sales of their products in different regions, they can now store the daily sales
of each product in each of the stores that they have. This circumstance is not
exclusive of large enterprises but it is also reflected in our daily activities. For
example, every day 100 hours of video are uploaded to YouTube every minute
(Murphy, 2012). Moreover, most of our personal use of data comes from the
increasing number and quality of the pictures that we take with our cameras.
In total, IBM estimates that we are generating 2.5 quintillion bytes of data each
day. Of which 90% of this data was created in the last two years (Silver, 2015).

Alongside the low storage costs of information, or perhaps a result from it, we
are experiencing a datafication process of every aspect of our live. As Kenneth
Neil Cukier and Viktor Mayer-Schoenberger claimed in their article The Rise
of Big Data, everything we do, online or otherwise, ends up recorded for later
examination in someone’s data storage units which may even be for sale (Cukier
et. al., 2013). Following this line of though, Facebook is datafiying friendships,
Twitter stray thoughts and LinkedIn professional networks. We have recently
witnessed with the Cambridge Analytica case how this information may even stir
the results of democratic elections. This datafiying process will only catalyze
with the advent of the Internet of Things (IoT) technology. For our context,
this technology can be overly simplified as the inclusion of monitoring software
in each of our daily life devices (from phones and watches to water warming
kettlebells and refrigerators).

Nonetheless, the abundance of information does not facilitate the insight ex-
traction process. As essayist and statistician Nassim Taleb states, the problem
with larger amounts of information is that the needle comes in an increasingly
larger haystack (Silver, 2015). Moreover, we are even facing a new set of math-
ematical problems imposed by the colossal set of measurements taken for each
observation. The clearest example being the genome encodings databases. For
each individual there are 3.8e9 genome base pairs that could be included as fea-
tures for a certain analysis (Murphy, 2012). Now the set of explanatory variables
is quite broader than the set of observations; even deciding which variables in-
fluence the outcome is a problem on its own (variable selection). Yet, it is also
true that the computation power and technology to tackle these problems has
become more accessible.

Consider that to run a sophisticated Markov Chain Monte Carlo simulation
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we do not need to develop and implement an algorithm or to have access to
sophisticated software. Worse yet, we do not even need to understand the method
to use it. We could simply write some lines of code on our personal computer and
probably get a result faster than the former scientists of the Manhattan Project.
This new accessibility paradigm could be considered as one of the propelling
forces behind the hype for Big Data. Specially since this hype is a result of
the fierce demand of the industry to employ the models that statisticians and
computer scientists have been working on for the last decades. Most of the
machine learning algorithms were not developed recently and have been here for
a while. For example, convolutional neural networks, a deep learning technique,
was developed around 1980 (Goodfellow et at, 2016). But the new paradigm
stems from the off-the-shelve technologies like Python and R that allow different
industries to implement this deep learning models effortlessly.

The term Big Data overemphasizes size as the most relevant ingredient of
the analysis. It is undeniable that the granularity with which the data is being
captured does allow for a more definitive and tailored investigation. However,
some state-of-the-art applications do not stem from zooming deeper into the data
but rather from employing different sources of information (many which did not
even exist before). For example, after a speech a politician might get a real-time
reaction of the electorate by performing a sentiment analysis on Twitter. Or
political scientists might get a more precise estimate of the turn-out rate per
state by looking at searches in Google related to finding a voting location rather
than by running polls (Stephens-Davidowitz, 2013). The present work explores
how Google searches could help health, economic and other authorities get a
current estimate of relevant variables, such as the number of acute respiratory
infection (ARI) cases, the unemployment rate or the homicide count, before they
are actually reported and, consequently, generate a real-time feedback loop.

This approach promises to increase response times since, depending on the
variable of interest, the reports usually have a lag of one to three months or even
up to a year before they are announced (like INEGI1’s homicide database). In
terms of methodology, it is worth pointing out that rather than using previous
internet searches to forecast the variable for a future period, it is used to get an
estimate on the actual period. To exemplify, we could employ Google searches
related to flu symptoms in November to get an estimate of how much we expect
the number of cases in that month to increase. In contrast to using this informa-
tion or previous months to forecast the number of cases for a future month such

1Mexico’s National Bureau of Statistics and Geography
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as December or January. This distinction is vital since what is being hypothe-
sized is that the internet searches used throughout this work are a reflection of
the current situation rather than a premonition for the future.

The current work contributes to two growing literatures. The first is the lit-
erature related to using search engine data to forecast different macroeconomic
variables. This work adds to this literature in mainly two dimensions. First,
we expand popular methodologies and proven analyses to the Mexican context
(such as health and unemployment rate nowcasting). Secondly, we propose be-
yond linear model specifications and actually explore the use of completely non-
parametric approaches. The second contribution is to the statistical learning
literature. In that context we prove the convergence (in a multivariate case) of
a popular nonparametric approach which is not readily found in classic books of
these topics. Moreover, we suggest some implementation changes for the kernel
regression optimization strategy that improve the performance when compare
to a standard package like statsmodels in Python. The improvements are the
result of a different numerical optimization strategy.

It appears that the first published paper that made the connection between
internet searches and macroeconomic forecasts was Ettredge. There they focused
on unemployment rates in the U.S. (Ettredge et al., 2005). Also, from 2005 to
2010 there were several publications that related internet searches with epidemi-
ology topics from cancer (Cooper et al., 2005) up to influenza (Polgreen et al.,
2008) and others (Ginsberg et al., 2009), (Brownstein et al., 2009), (Valdivia and
Monge-Corella, 2010) to mention a few.

The use of search engine data for economic applications was motivated and
popularized by Choi and Varian, (2011). There, they employed Google Trends
data on searches related to automobile sales, unemployment claims, travel des-
tinations and consumer confidence to forecast the movement of the related eco-
nomic variables. They proposed a simple seasonal linear autoregressive model
that, depending on the application, exhibited a 5% to 20% improvement in accu-
racy when employing relevant Google Trends searches. McLaren and Shanbhoge
(2011) summarize how search data could benefit central bank’s decision making.
In that work they introduced and defined the term nowcasting for the set of indi-
cators that could help central authorities get a more precise view of the current
situation of different economic indicators.

In terms of the variable selection techniques, Scott and Varian (2014) were
the first to propose the use of a technique called Bayesian Structural Time Series
to determine which variables should be included when nowcasting economic time
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series. This technique is the combination of three procedures: Kalman Filters to
estimate trends and seasonality effects, Spike-and-Slab regression to determine
a posteriori distribution on what variables should be included in the model and
Bayesian Model Averaging to combine the best performing models for the final
forecast. The use of Kalman Filters for time series was first proposed by Harvey
(1991), Durbin and Koopman (2001). Spike-and-slab was developed by McCul-
loch (1997) and Madigan and Raftery (MadRaf, 1994). Finally, averaging over
ensemble of models was again motivated by Madigan and Raftery (1994) and
Volinsky (2012). This methodology has been successfully employed in a broad
set of additional studies.

The non-linear model extensions that the current work proposes are inspired
and borrow heavily from Cosma Shalizi (Shalizi, 2017).

The present work is organized as follows. Chapter 2 explains the information
used for the analyses. Chapter 3 examines all the time-series model specifications
tested as well as the variable selection mechanism used to discern which internet
searches had predictive power. Chapter 4 presents the results of employing the
model to the data. Chapter 5 offers concluding remarks. Finally, the Appendix
contains all the material needed to fully comprehend the proofs presented in this
work.

2 Data

There are two different kinds of data used throughout the present work: Google’s
search queries and the different time series variables. INEGI is the source for
both the Mexico’s urban unemployment rate and Mexico’s city homicide felonies,
while Secretaria de Salud is the source for the acute respiratory infections (ARI).
Below is a detailed description of all the information.

2.1 Google’s search queries

Google provides two services, namely Google Correlate and Google Trends, that
allows us, respectively, to find which search terms might be relevant for a certain
time series and to download this information.

Google Correlate is a web-service backed by an algorithm that, for a given
time series we input, it returns the search terms that are most closely correlated
with it. Intuitively, it takes the input time series, normalizes it by subtracting
the mean and standardizing it to 1 and then employs an approximate nearest
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neighbor search to find the top 100 queries that are closer to this time series
based on the Pearson correlation metric. Moreover, to avoid irrelevant searches
it employs different techniques to filter terms that might not have predictive
power. Additionally, in order to efficiently explore all the search terms space, it
uses a hash function approach (Vanderkam et. al., 2015).

In the context of this work, the Google Correlate algorithm was mostly used
to hint what type of search terms might be relevant for each of the different anal-
yses. Except for the homicide case, where the exact search term suggested was
used. It is worth pointing out that the underlying reason for not using the exact
search terms suggested by Google Correlate is that those terms suggested were
not the most relevant in terms of the context; relevant in the sense of the aggre-
gate number of queries. For example, the Google Correlate algorithm suggested
that, in the unemployment context, employment finding websites were relevant;
however, they were not the most popular sites and hence were substituted for
other which were more popular and had a higher predictive power. Also, for the
ARI context, the algorithm suggested the use of some flu medications but they
were substituted for the more popular medications.

The second service, Google Trends, is a web-service that allows us to access
the information of a given search term for a specific time range and geographical
location. The output data comes as an indexed time series which is constructed
in the following manner.

First, it finds all the relevant search terms given the context. To find these
search terms it uses word processing and other Natural Language Processing
techniques. An example is that if someone searches car then automobiles and
used cars would be included in the output index. It is also possible to select
the exact search them by using double quotation ("car"). Moreover, Google
Trends has 26 categories to group the search terms. The classic example being
that if someone searches apple, then it is possible to select the results that are
only relevant to the Computer & Electronics category which would relate to
the company Apple. Or if the Food & Drink category is selected then the results
would relate to the actual fruit. This distinction is achieved by analyzing the
search activity. Thus, if the search term in one case was apple chargers then it
would fall into the first category, whereas for the other case if the subsequent
search from apple was orange then it would fall on the second category.

Then, merging all relevant search terms found in the previous step, a per-
centage from total is calculated. The percentage is computed by dividing the
aggregate activity of the merged search terms by the total number of queries in
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that time frame and location. For example, assume that the total activity in a
certain period and location is 100. Also, referring back to the previous example,
assume that the number of car searches is 1, of automobile 0 and of used cars

1, then the percentage reported would be 2%. However, if for the next year
and same location, the total number has quadruple but the search activity has
only doubled then the reported percentage would be 1%. This normalization
is done to understand how the relevancy of the search terms evolved over time
discounting the natural growth of internet activity.

Finally, the reported percentages for each period are normalized so that the
highest value in that time frame and geographical location is 100. A reported
graph would be similar to

Other considerations are the following. The time frequency outputted changes
depending on the length of the time frame. Thus, if the time frame is one day,
then the data is reported in an hourly manner. Whereas if the time frame is
from the first date available 2004-01 up until 2018-01, then the data is reported
in a monthly manner. Also, there is a privacy threshold defined, which if not met
then the data is not reported. In other words, there needs to be enough search
activity for it to be reported. Finally, the results can vary day by day since the
reports are constructed with the given sample of the data used in that day.

The search terms for each of the three analyses are the following. For the
ARI analysis, the search terms used fall into two categories. The influenza cat-
egory where the search term used was estacional which related to Influenza

estacional. The second category relates to flu symptoms and medicines, the
search term "antigripales + rinofaringitis + klaricid + antiflu-des"

was used. The last search term combined flu related medications (klaricid
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and antiflu-des) and the formal medical name of flu: rhinopharyngitis. The
time frame embarks the beginning of 2010 up to until the beginning of 2015 and
it comes at a weekly level. For the unemployment analysis the search queries
fell into the Employment -- Topic, which contains as its main search terms:
empleo, portal empleo, occ, bolsa de trabajo, computrabajo, empleo.gob,
and others. The previous search terms are a mixture of employment key words
(such as empleo) and of employment finding websites (portal empleo, occ,
computrabajo, empleo.gob). The data goes from 2004 up to 2018 and it comes
at a monthly level. Finally, the search term for the homicide rate was horarios
misa from 2004 up to 2018 which comes at a monthly level. This search term
alludes to the religious church mass time schedule.

2.2 Time series data

Moving into the data used for the present work, the acute respiratory infections
(ARI) data is provided by the Department of Health’s Reported Cases Dataset.
The data is collected at a weekly basis and it contains all ARI diagnoses and
reported cases per each of the 16,250 clinics in the sample. Only the clinics
belonging to the most relevant health subsystems are included (Seguro Popular,
IMSS, IMSS-Oportunidades and ISSSTE )2 where the excluded constitute around
1% of public health services in the National Survey of Health and Nutrition 2012
(ENSANUT for its Spanish acronym). The data set records the ARI diagnoses
based on the J09X up to J22X ICD codes. It is also worth noticing that each
public outpatient clinic is legally required to report this information. In terms
of reporting the data, while each clinic has immediate knowledge of the number
of cases and hence notice a surge on ARIs it is not clear how long it takes to
coordinate and aggregate this information at a national level. We assume a one
month lag.

The unemployment rate used in this work is provided by INEGI. It is reported
in a monthly format, aggregated at a national urban level. It has a reporting
lag of one to two months. It is computed by dividing the population over 15
years which is currently unemployed but searching for a job by the population
over 15 years which is economically active (which is either working or in the

2The Mexican Health Subsystems are: Seguro Popular, Instituto Mexicano del Seguro Social
(IMSS), IMSS-Oportunidades which is a joint program between the previous subsystem and
the social welfare program Oportunidades. Finally, Instituto de Seguridad y Servicios Sociales
de los Trabajadores del Estado (ISSSTE) which is a health program for government workers.

14



condition to work). The size of both populations is estimated based on the
National Employment and Occupation survey (ENOE for its spanish acronym).
The survey generally asks in the sense of whether the respondent is currently
employed, to describe its job or whether the respondent has been looking for
employment (and for how long) between many other questions. Moreover, it has
a sampling strategy where the households are stratified and then, selected with
a certain probability in a two-phased process based on different criteria. This
last procedure guarantees the representativity of the information.

Again, Mexico City’s homicide rate is constructed from INEGI’s General De-
ceased data base (Defunciones Generales). It is a data base which records the
deaths of Mexican citizens and their diverse causes: from health issues, accidents
or violence related. INEGI’s personnel is in charge of an active recollection of this
information which comes in three types of documentation: acta de defunción,
certificado de defunción, cuaderno de defunciones. This information is provided
by the diverse organizations that manage death related events such as the Civil
Registry (Registro Civil) or the Public Prosecutor’s Office (Ministerio Público).
Moreover, INEGI’s personnel controls the quality and ensures the correct pro-
cessing of the information into digital form. The variables used for the analysis
were the following: (1) the columns used to specify the day, month and year
of the event occurrence were: dia ocurr, mes ocurr, anio occur, respectively.
(2) The column used to filter information by state was: ent ocurr. Finally,
(3) the following three columns allowed to subset the information into homicide
events only. The presunto column indicates which case stemmed from a homi-
cide event. Additionally, causa def and lista mex provided additional detail
about the characteristics of the event.

3 Empirical Approach

This section discusses the different empirical approaches taken throughout this
work. The discussion centers around three main topics: how was performance
evaluated, what were the model specifications tested and how were the model’s
predictors selected. The first topic exhibits the design of the out-of-sample (or
test) sets and the rationale behind the evaluation metrics employed. The second
topic analyzes the parametric and nonparametric models used. It exhaustively
develops the convergence theory of the nonparametric approach and proposes
some implementation adjustments. It concludes by comparing the advantages
and disadvantages of the parametric model against the nonparametric one. It
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also discusses other possible model alternatives in between. Finally, the third
topic deals with the process of selecting what predictors should be included in
the model. It illustrates how relevant search terms are selected from the myriad
of choices and, additionally, it examines how many predictor lags should be
included.

3.1 Evaluation Strategy

3.1.1 Constructing Test Sets for Time Series

It is now standard to evaluate the performance of a model with observations that
were not used while it was being estimated. The usual approach is that, given
a data set, around 70-80% of the observations are used for model estimation
(or training), while the remaining 20-30% are used for model evaluation (or
testing). This leads to the so-called, train and test split. This is done since,
given enough capacity, some models are able to reduce their train error to zero
(essentially interpolating the data). Yet, they will not generalize properly to new
observations. The poor generalization occurs due to the high variance introduced
by the model, which is really imitating the noise in the training data. The classic
manner of splitting the data is to randomly assign 70-80% of the observations to
the train set and the remaining to the test set (Hastie et. al., 2009). However,
this is only appropriate when the observations are independent but not when
they come from a time series.

In the time series context, where most certainly the lags of variables will
be used as predictors, it is necessary to maintain the order of the data to take
advantage of the time patterns. To argue why, suppose we are analyzing a yearly
process that increases, on average, 3% every year. Note in the graph below how,
if the data is randomly shuffled, the time pattern is ruined.
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Therefore, to preserve time patterns, we are going to follow the next train/test
approach. The train set will be formed from all the observations that range from
the first period until the period that amounts to roughly ˜70% of the data. The
remaining future periods are going to be left to the test set. To represent this,
if we have monthly data from 2010-01 to 2018-01 then the split will be

2010/01 · · · 2012/10 · · · 2015/08︸ ︷︷ ︸ 2015/09 · · · 2018/01︸ ︷︷ ︸
train ≈ 70% test ≈ 30%

The previous split deviates from the common time series approach of forward
chaining. In this approach several train and tests sets are constructed and the
prediction result is computed from the mean evaluation of the test sets. This
scheme is shown below where � denotes a period used for training and F for
testing

t1 t2 t3 t4 t5 t6 t7 t8
� � � � � F
� � � � � � F
� � � � � � � F

the result is the mean evaluation of each F. To compare, our approach is shown
below. It is worth noting that we are using the same information for testing

t1 t2 t3 t4 t5 t6 t7 t8
� � � � � F F F

yet we are not iteratively re-training the model each time. This is done truly to
have one model at the end and not an ensemble of models (since re-training will
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be modifying estimated parameters each time). Additionally, this last approach
places greater stress on the model’s capacity since it is tested on more periods
and it is not allowed to use the new information available.

3.1.2 Choosing an Evaluation Metric

Once the test set is constructed, then the model predictions are compared to the
actual values for those periods. Let yi denote the actual value at testing period i,
ŷi be the model’s prediction in the same period and ei $ yi− ŷi. In the Machine
Learning literature, the classic metrics are

MAE =
1

m

m∑
i=1

|yi − ŷi| = m−1 ‖e‖1

RMSE =

(
1

m

m∑
i=1

(yi − ŷi)2
)1/2

= m−1/2 ‖e‖2

MAPE =
1

m

m∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100

where MAE stands for Mean Absolute Error, RMSE for Root Mean Square
Error and MAPE for Mean Absolute Percentage Error. Note that the first two
have a ‖·‖p interpretation and the last one aims at being unitless. Their common
goal is to provide a summary statistic of the overall closeness of the predictions,
where each data point is considered equally important.

Note that throughout this work, as a pre-processing step, all the predictors are
normalized to have mean 0 and standard deviation of 1. This is done primarily to
improve the model’s performance since the nonparametric approach is receptive
to the units of the predictors but also to compare the results between the linear
and the nonparametric approach. Due to the preprocessing step, the MAPE
loses relevance and the focus is placed on MAE and RMSE. Moreover, the most
relevant metric for this work is the MAE simply because it is not as sensible to
outliers as the RMSE.

Even though the quantitative results for this work rely on the outcome of
these metrics they are also accompanied by other analyses such as residuals
examination and prediction versus actuals plots to complement details that could
be bypassed by these metrics. The motivation for these other analyses will be
exposed in the results section.
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3.2 Model Specification

The central problem of this section focuses on choosing the best model alternative
to estimate a target variable given its past values and possibly some Google
search terms. Let yt denote the target variable at period t and let gt stand
for the Google predictors in that same period. Thus, the problem is to find a
function µ̂n (·) that approximates

E
[
yt|y(p)

t−1, gt

]
$ µ

(
y
(p)
t−1, gt

)
where y

(p)
t−1 = yt−1, . . . , yt−p and p indicates the number of lags included in the

model. In this work $ stands for a new definition. Note that, due to the framing
of the discussion, we are not making any assumptions on the distribution of the
random variable yt. This is because we are not trying to uncover the true data
generating process but rather to asses which model is better at making out-of-
sample predictions and, also, if the Google’s search terms enhance this accuracy.
The first approach analyzed in this section is an autoregressive linear regression
of the following form

µ̂n

(
y
(p)
t−1, gt|β,D

)
= β0 +

p∑
l=1

βlyt−l + βp+1gt

which is a global linear parametric model on β. The second approach consid-
ered is a fully nonparametric model that estimates locally µ (·). This is the
autoregressive kernel regression which is constructed in the following manner.

µ̂n

(
y
(p)
t−1, gt|D

)
=

n∑
i=1

K
((

y
(p)
t−1 − y

(p)
i , gt − gi

)
� h−1

)
yit∑n

j=1K
((

y
(p)
t−1 − y

(p)
j , gt − gj

)
� h−1

)
where � denotes element-wise vector multiplication, h−1 =

(
h−11 , . . . , h−1p+1

)T
,

where h is the kernel’s bandwidth which controls the sizes of the neighborhoods
in consideration. Additionally, D denotes the training data set and K (·) a kernel
function. The two approaches are fully discussed in the following sections.
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3.2.1 Autoregressive Linear Regression

As stated previously, the autoregressive linear regression aims to approximate

E [yt|yt−1, . . . , yt−p, gt] ≈ β0 +

p∑
l=1

βlyt−l + βr+1gt

where the vector parameter β is estimated from the training data. The procedure
to estimate β involves solving the least-squares problem

min
β

T∑
t=1

(
yt − β0 +

p∑
l=1

βlyt−l + βp+1gt

)2

This model is commonly known as AR (p). Finally, it is worth noting that this
is the standard model employed in the nowcasting literature.

3.2.2 Autoregressive Kernel Regression

Proving Convergence Now, we will analyze the conditions that guarantee the
correct functioning of the kernel regression’s most attractive feature. Namely,
that it recovers or learns any arbitrary µ (·) function given enough information.
Although this fact is well-known, a proof is not readily found on the classical
books of the literature. Li and Racine provide a sketch of the proof for the
univariate case. This is used as the general guideline for this work (Li and
Racine, 2007). For this, we will drop the specific time series notation for a
more general one. Also, since the propositions below use independent sample
assumptions, we will proceed with those and, at the end, discuss what changes
need to be considered for those assumptions to hold on a time series context.

The main result of this section states that

MSE (µ̂n (x) , µ (x)) = o
(
‖h‖3 + (nh1 · · ·hp)

)
thus, as n → +∞, ‖h‖ → 0 and (nh1, . . . , hp) → +∞ then µ̂n (x) converges in
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mean-square to µ (x). For this we are going to work with a particular quotient

E
[
(µ̂n (x)− µ (x))

2
]

= E

( (µ̂n (x)− µ (x)) f̂n (x)

f̂n (x)

)2


≈ E

( (µ̂n (x)− µ (x)) f̂n (x)

f (x)

)2


where f (x) is the density function to which we are taking expectations and

f̂n (x) is it’s kernel density estimator (see Density Estimation in the Appendix).
We are going to derive an expression for the past expectation and then argue
the overall convergence of MSE (µ̂n (x) , µ (x)). Note that by definition

E

[(
(µ̂n (x)− µ (x)) f̂n (x)

)2]
= E

( n∑
i=1

K
(
(Xi−x)� h−1

)
(Yi − µ (x))

nh1 · · ·hp

)2


Since var (·) = E[(·)2]− E [(·)]2, the past expectation becomes

= E

[
n∑
i=1

K
(
(Xi−x)� h−1

)
(Yi − µ (x))

nh1 · · ·hp

]2
(bias2)

+ var

(
n∑
i=1

K
(
(Xi−x)� h−1

)
(Yi − µ (x))

nh1 · · ·hp

)
(variance)

which brings to mind a square bias and variance decomposition. Let’s deal with
the bias first

E

[∑n
i=1K

(
(Xi−x)� h−1

)
(Yi − µ (x))

nh1 · · ·hp

]
=

E

[∑n
i=1K

(
(Xi−x)� h−1

)
(µ (Xi)− µ (x))

nh1 · · ·hp

]
+E

[∑n
i=1K

(
(Xi−x)� h−1

)
εi

nh1 · · ·hp

]
where Yi = µ (Xi) + εi and E [εi|X1, . . .Xn] = 0. By proposition 10 of the
Appendix, the last summand becomes 0 and since the sample is identically dis-
tributed therefore

=
E
[
K
(
(X− x)� h−1

)
(µ (X)− µ (x))

]
h1 · · ·hp
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by proposition 5 of the Appendix the past expectation becomes

=
f (x)κ

2

p∑
r=1

h2r

[
2µr (x) fr (x)

f (x)
+ µrr (x)

]
+ o

(
‖h‖2

)
finally, elevating the previous term to the second power yields the result from
proposition 6. Hence the square bias of MSE (µ̂n (x) , µ (x)) becomes

bias2 =

(
p∑
r=1

f (x)κh2r
2

[
2µr (x) fr (x)

f (x)
+ µrr (x)

])2

+ o
(
‖h‖4

)
In terms of the variance, note that

var

(
n∑
i=1

K
(
(Xi−x)� h−1

)
(Yi − µ (x))

nh1 · · ·hp

)
=
var

(
K
(
(X− x)� h−1

)
(Y − µ (x))

)
nh21 · · ·h2p

since the sample is independent and identically distributed. Also,

cov (µ (X) , ε) = E [µ (X)E [ε|X]]− E [E [ε|X]]E [µ (X)]

= 0

therefore, the previous variance term becomes

=
var

(
K
(
(X− x)� h−1

)
(µ (X)− µ (x))

)
nh21 · · ·h2p

+
var

(
K
(
(X− x)� h−1

)
ε
)

nh21 · · ·h2p
according to proposition 8 and 11 of the Appendix the expression above reduces
to

variance =
f (x) ρ

∑p
i=1 h

2
iµi (x)

nh1 · · ·hp
+
ε2 (x) f (x)ωp

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
Dividing the previous results by f (x) finally leaves us with

MSE (µ̂n (x) , µ (x)) ≈

(
p∑
r=1

κh2r
2

[
2µr (x) fr (x)

f (x)
+ µrr (x)

])2

+
ρ
∑p
i=1 h

2
iµi (x) + ε2 (x)ωp

f (x) (nh1 · · ·hp)

+ o
(
‖h‖4 + (nh1 · · ·hp)−1 ‖h‖

)
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As usual, there is a conflicting bias and variance trade-off. The bias wants to
drop ‖h‖ to 0 as fast as possible, but in that case the variance would tend to +∞.
Withal, if n → +∞, ‖h‖ → 0 but (nh1 · · ·hp) → +∞ then the MSE tends to
zero. To accelerate this process, we can choose the kernel’s bandwidth (the sizes
of the neighborhoods) to minimize the MSE’s leading term. In order to get an
analytical solution we are going to worsen the approximation by ignoring the first
term of the variance. Furthermore, assume that all the predictors are normalized
and relevant, then all the bandwidths would be of a similar magnitude (say h)
and therefore the leading term becomes

ζ (h,x) $
h4

4
Ω (x) +

ς (x)

nhp

where

Ω (x) $

(
p∑
r=1

κ

[
2µr (x) fr (x)

f (x)
+ µrr (x)

])2

and

ς (x) $
ε2 (x)ωp

f (x)

If we minimize the above equation with respect to h, then hopt (n,x) would have
to solve

h3optΩ (x) =
pς (x)

nhp+1
opt

from this equation it follows that

hopt (n,x) =

(
pς (x)

nΩ (x)

) 1
p+4

which leaves us with
hopt (n,x) ∝ n

−1
p+4

If we substitute this value of hopt the convergence rate of the MSE becomes

MSE (µ̂n (x) , µ (x)) = O
(
n

−4
p+4

)
The above hopt (n,x) depends on x so if we want to get a general optimal

bandwidth we could integrate the above MSE with respect to the probability
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measure and hence work with

ζ (h) $
h4

4
Ω +

ς

nhp

where Ω =
∫

Ω (x) f (x) dx and ς =
∫
ς (x) f (x) dx. Following the same analysis,

we equally obtain

E [MSE (µ̂n (X) , µ (X))] = O
(
n

−4
p+4

)
Notice, however, that the optimal bandwidth is a theoretical result since we do

not know f (·), µ (·) or any of the derivatives of the two functions. Nonetheless,
in the next section we discuss how to approximate the optimal bandwidth by
cross-validation.

Choosing the Bandwidth It is standard to use cross-validation to approxi-
mate the generalization error of a model. In our context, since we only have a
single sample of the data generating process, we use cross-validation to estimate
E [MSE (µ̂n (x) , µ (x))]. This estimator is defined as

CV Jk (h) $
1

k

k∑
r=1

1

m

∑
j∈Icr

J (yj , µ̂n−m (xj ,h|Ir))

where J (·, ·) denotes an evaluation metric such as MSE or MAE, Ir denotes
the train observations on fold r = 1, . . . , k while Icr denotes the complement, thus
the test observations. We assume |Ir| = n − m and |Icr | = m, hence the total
sample size is n. In principle, we choose the bandwidths to minimize

min
h
CV Jk (h)

The literature’s practice is to use leave-one-out cross validation (k = n, m =

1) with J (·) = ‖·‖22 as a default. Thus making the above formula become

CV 2
n (h) =

1

n

n∑
r=1

(
yr, µ̂n−1

(
xr,h|I loor

))2
where I loor simply becomes {1, . . . , n} \ {r} where loo stands for leave-one-out. In
other words, we are estimating our kernel regression with all the data except one
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observation and testing the predictions against it. The reason why this estimator
is popular is because it has a simplifying formula that avoids estimating a new
regression for each of the n folds. To derive this simplification first define the
following set of numbers

Lr $
K (0)∑n

j=1K ((xr−xj)� h−1)
, for r ∈ {1, . . . , n}

hence the leave-one-out cross validation formula as shown in (ANP, 2007) be-
comes

CV 2
n (h) =

1

n

n∑
r=1

(
yr − µ̂n (xr,h)

1− Lr

)2

where it is only needed to estimate a kernel regression once with all the data and
then adjust with Li. A general proof for the above result can be found in (Hastie
et. al., 2009). The computational shortcut does come at a cost. When comparing
CV Jn (h) versus CV Jk (h), the former has a lower variance but a higher bias. The
reason is that all the kernel regression estimates do not vary much; they are
computed with almost the same information. Also, note that if the estimates do
not change on each fold, then the evaluation used above would highly penalize
outliers. This, heuristically, makes the bandwidths smaller.

To address the previous concerns, we propose the following cross-validation
strategy

CV 1
k (h) =

1

k

k∑
r=1

1

m

∑
j∈Icr

|yj , µ̂n−m (xj ,h|Ir)|

where k ranges from 3 to 5 and the evaluation metric used is J = ‖·‖1. Moreover,
the train/test split is 70/30%. The extra cost of this approach comes from
having to estimate k times a kernel regression with dn (0.7)e observations which
is O (k dn (0.7)e). In contrast, leave-one-out estimates one kernel regression with
the full data set, thus O (n). Therefore, the proposed approach increases the
number of computations in each iteration by

O ([k (0.7)− 1]n)

which is linear on the number of observations. These are the costs but what are
the benefits? Note that, as mentioned previously, leave-one-out (or CV 2

n ) is a
heavily biased estimate. Thus, it becomes an attractive choice when n is really
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large because, in this scenario, it both reduces the computational burden and
its estimating bias. However, in a time series context, we might not have the
sufficient information available for this bias to reduce as needed. Note if we have
weekly observations then n = 250 amounts to 5 years of data but to get n = 2000
we will need more than 38 years. Hence when constrained on n, the bias of CV 2

n

would not decrease as rapidly hence making CV 1
k a more attractive choice. Also

in this case the extra computational cost is not a heavy burden.
Besides the different cross-validation strategy, we propose a different numer-

ical optimization implementation for minimizing the bandwidth. Currently, the
npreg implementation in R and the statsmodels implementation in Python use
derivative-free algorithms. The R implementation uses Powell’s algorithm and
the Python implementation uses Nelder-Mead’s algorithm. Beyond the obvious,
which is avoiding the computational costs of estimating derivatives, we have not
found a strong motivation for derivative free algorithms. Therefore, the present
work opted to numerically optimize CV 1

k by a non-linear conjugate gradient
algorithm (Fletcher-Reeves Method) which indeed uses the derivatives of the ob-
jective function (Nocedal and Wright, 2006). For the ARI dataset, there was a
significant improvement of employing this approach

(
CV 1

k , CG alg
)

versus the

implementation in Python
(
CV 1

n , NM alg
)
. A comparison plot is shown in the

ARI results section.

Dealing with Time Series The convergence proof assumed that the obser-
vations where independent and identically distributed. Since the bias term only
relied on taking expectations, the results will still be valid for dependent obser-
vations. Nonetheless, the variance term would be now affected by covariances.
Referring back to the variance term

var

(
n∑
t=1

K
(
(Xt−x)� h−1

)
(Yt − µ (x))

nh1 · · ·hp

)
=

var
(
K
(
(X− x)� h−1

)
(Y − µ (x))

)
nh1 · · ·hp

+ 2

n∑
t=1

n∑
s>t

cov (ξ (t,x,h) , ξ (s,x,h))

n2h21 · · ·h2p

where
ξ (t,x,h) $ K

(
(Xt−x)� h−1

)
(Yt − µ (x))
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Using previous results, the variance first term would equal

var
(
K
(
(X− x)� h−1

)
(Y − µ (x))

)
nh1 · · ·hp

=

=
ε2 (x) f (x)ωp + f (x) ρ

∑p
i=1 h

2
iµi (x)

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
To avoid worsening the convergence rate we would require that the covariance
term not only be bounded but

2

n∑
t=1

n∑
s>t

cov (ξ (t,x,h) , ξ (s,x,h))

n2h21 · · ·h2p
≤ φ (x,h)

nh1 · · ·hp

This will happen with weakly dependent data such that

|cov (ξ (t,x,h) , ξ (s,x,h))| ≤ ρ (s− t) var (ξ (t,x,h))

assuming

n−1∑
t=1

n∑
s>t

ρ (s− t) =

n−1∑
t=1

n∑
j=1

ρ (j)

≤ n
∞∑
j=1

ρ (j)

where the correlations decrease sufficiently in time so that

∞∑
j=1

ρ (j) < +∞

Eliminating Design Bias For simplicity, we will now switch to the univari-
ate case. Note how we can derive the Nadaraya-Watson regression estimate by
solving the following problem

min
a

n∑
i=1

wi (xi, x, h) (yi − a)
2
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where

wi (xi, x, h) $
K
(
(xi − x)h−1

)∑n
j=1K ((xj − x)h−1)

the first order conditions for a imply

[a] : 2

n∑
i=1

wi (xi, x, h) (yi − â (x)) (−1) = 0

solving for a yields

â (x, h|D) =

n∑
i=1

wiyi

=

n∑
i=1

K
(
(xi − x)h−1

)
yi∑n

j=1K ((xj − x)h−1)
= µ̂n (x, h|D)

where D denotes conditioning onX1 = x1, . . . , Xn = xn. Therefore, the Nadaraya-
Watson estimate is equivalent to finding a constant that minimizes the MSE.
Additionally, since the kernel assigns higher weight to values close to the target
x, or all of it if the kernel has a compact support, hence, the regression estimate
can be interpreted as finding an optimal local constant which does vary depend-
ing on x. Thus, the central question of this section becomes: is there another
local approach that might be better than simply estimating a constant?

Before proposing other local approaches. Let’s recover the results from the
last section but through a different alley. For the univariate case, the expected
bias of µ̂ (x) is

E [µ̂n (x)− µ (x)] =
h2κ

2

[
2f1 (x)µ1

f (x)
+ µ11 (x)

]
+ o

(
h2
)

This result could be obtained by following the next steps.

E [µ̂n (x)− µ (x) |X1 = x1, . . . , Xn = xn] ≈ E
[
(µ̂n (x)− µ (x))

fn (x)

f (x)
|D
]

this past expectation is

E

[
n∑
i=1

K
(
(xi − x)h−1

)
(yi − µ (x))

nhf (x)
|D

]
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since yi = µ (xi) + εi and E [εi|X1 = x1, . . . , Xn = xn] = 0. The previous expec-
tation becomes

n∑
i=1

K
(
(xi − x)h−1

)
(µ (xi)− µ (x))

nhf (x)

Taylor expanding each µ (xi)−µ (x) term around x up to a second order results
in

= µ1 (x)

n∑
i=1

K
(
(xi − x)h−1

)
(xi − x)

nhf (x)

+
µ11 (x)

2

n∑
i=1

K
(
(xi − x)h−1

)
(xi − x)

2

nhf (x)
+ o

(
h2
)

By the law of total expectation

E [µ̂n (x)− µ (x)] = E [E [µ̂n (x)− µ (x) |D]] .

Hence if we take expectations from the Taylor expansion above we have

=
µ1 (x)

f (x)
E

[
n∑
i=1

K
(
(Xi − x)h−1

)
(Xi − x)

nh

]

+
µ11 (x)

2f (x)
E

[
n∑
i=1

K
(
(Xi − x)h−1

)
(Xi − x)

2

nh

]
+ o

(
h2
)
.

By the last two propositions from the Appendix, the above expressions is equiv-
alent to

E [µ̂n (x)− µ (x)] ≈ h2κ

2

[
2f1 (x)µ1 (x)

f (x)
+ µ11 (x)

]
+ o

(
h2
)

which is the exact same result we got previously. Note that the only term that
depends on the density is

2f1 (x)µ1 (x)

f (x)

which is called, by the same reason, the design bias. Relating back to the central
question of this section, it is quite interesting to note that if we estimate locally
a line rather than a constant we eliminate this bias.
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To see this, lets pose the following problem

min
a,b

n∑
i=1

wi (xi, x, h) (yi − a− bxi)2

which is the classical weighted least squares problem but where now the weights
depend on x. Let’s denote the estimated line at each point as

`i (x, h|D) $
[
(1, x)

T (
XTWX

)−1
XTWy

]
i

and therefore our new regression estimate becomes

µ̂lln (x, h|D) $
n∑
i=1

`i (x, h|D) yi

where ll denotes locally linear. Performing the same bias analysis as before

E
[(
µ̂lln (x)− µ (x)

)
|D
]

=

n∑
i=1

` (xi, x, h) (µ (xi)− µ (x))

since yi = µ (xi) + εi and E [εi|X1 = x1, . . . , Xn = xn] = 0. Again Taylor ex-
panding each µ (xi)− µ (x) around x up to a second term we have

= µ1 (x)

n∑
i=1

` (xi, x, h) (xi − x) +
µ11 (x)

2

n∑
i=1

` (xi, x, h) (xi − x)
2

+ o
(
h2
)

however due to the first order condition
∑n
i=1 ` (xi, x, h) (xi − x) = 0 therefore

the above term becomes

E
[(
µ̂lln (x)− µ (x)

)
|D
]
≈ µ11 (x)

2

n∑
i=1

` (xi, x, h) (xi − x)
2

+ o
(
h2
)

which mitigates the effect of the first order derivatives.
The above results can be expanded to local polynomials. However, as always

this will imply a wild increase in computational time and variance which could
be actually counterproductive.
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3.3 What approach to choose?

To set some context for this section, we need to understand the consequences
of the curse of dimensionality3 for local methods such as the kernel regression
(Hastie et. al., 2009). This phenomenon states that when adding more predic-
tors, a fixed sized neighborhood of a training point becomes increasingly sparser;
thus, it needs to exponentially increase the size of its neighborhood to maintain
the same amount of members as before. In our context, given a new data point,
the kernel regression will weigh more heavily points that are actually not close
enough to yield reasonable predictions, therefore leading to a loss in accuracy.

As seen above, the MSE convergence rate

E [MSE (µ̂n (X) , µ (X))] = O
(
n

−4
p+4

)
massively increases on the number of predictors. Thus, the considerable draw-
back of the kernel regression is its inability to deal with several predictors. There-
fore, in this case the linear regression approach is preferable since it will at
least be able to extract meaningful information from all the predictors. How-
ever, if only a few relevant variables are included and there are sufficient ob-
servations, then the best modelling alternative is the kernel regression. This
is the case since it is guaranteed to converge to whatever function might the
E [yt|yt−1, . . . , yt−p, gt] follow without requiring any assumptions. Another sig-
nificant point to consider is computational time. Contrary to the linear regres-
sion, the kernel regression needs to numerically optimize the choice of bandwidths
which takes more time than solving the closed-form solution to the least squares
problem.

As a final comment for this section, it is worth noting that there are model
approaches that lie in between the rigidness of the parametric linear model and
the full flexibility of the nonparametric approach. These approaches should also
be incorporated as standard alternatives as well. One of such approaches would
be the generalized additive linear model (GAM). This model approximates the
mean response by

E [yt|yt−1, . . . , yt−p, gt] ≈ β0 +

p∑
l=1

βlsl (yt−l) + βp+1sp+1 (gt)

3The expression is coined to Bellman (1961). This curse refers to the phenomena that arise
when analyzing high-dimensional spaces that do not appear in low-dimensional spaces.
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where si (·) denotes a spline function. It is similar to the linear model in the
sense that the effect of each variable is treated independently. It differs in that
now non-linear relationships with the response are estimated for each predictor.
Likewise, the computational estimation for GAMs is closer to the linear model
since it requires to iteratively solve least-square problems. This approach was
also used for each of the analysis throughout this work. Nonetheless, there
was no significant improvement from the linear model and thus they were not
included in the results. Our hypothesis for this consequence is twofold. Either the
relationships are relatively linear so there was no extra benefit of including more
flexibility. Or that to further improve the predictions, it is needed to consider
interaction terms. This last point is the strongest hypothesis of why the kernel
regression approach would notably improve the results of the ARI analysis while
the GAM approach did not.

3.4 Variable Selection

3.4.1 Selecting Relevant Search Terms

Selecting relevant search terms from a myriad of possibilities is probably the
most important question raised when incorporating Google Trend ’s data into
an analysis. Thankfully, this heavily loading is done by the Google Correlate
algorithm. As stated in the data section, this algorithm takes as input a given
time series and returns the top 100 search terms that most correlate with it.

Once the list of the top 100 terms is provided, the next question is which
of those search terms to incorporate. It would not be wise to include all of
them since we might not have sufficient observations to sustain that number of
predictors or, most certainty, some of them would be highly correlated between
them and thus make the parameter estimation unreliable. An initial heuristic
manner to trim the list is to first dispose all the spurious search terms that
got in and then to cluster the remaining terms in groups. A great example for
this procedure is the unemployment case. In that analysis, several job searching
websites where suggested by Google Correlate. Hence rather than incorporating
one by one to the analysis, the Employment - Topic aggregates the activity of
all of them and this was used as a predictor.

A more automated procedure would be to use variable selection algorithms
such as LASSO or Spike-and-Slab. (Murphy, 2012). However, these off-the-
shelf procedures are not guarantee to work with highly correlated data. For
example, LASSO is guaranteed to converge to the true model when the predictors
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are sufficiently uncorrelated (Hastie et. al., 2009). To overcome this, there is
a model called Bayesian Structural Time Series (BSTS ) which was actually
developed to select predictive Google search terms. This algorithm provides a
posterior probability that a search term might belong to the underlying model. In
general, this approach combines the Spike-and-Slab variable selection algorithm
with other time series specific treatments (such as the Kalman Filter). For the
full details of this procedure read (Varian and Scott, 2013).

3.4.2 Deciding what to include in the model

Once the relevant search terms are found and other predictors are selected, it
is now time to actually choose what to include in the models. Both from the
predictors available but also from their lags. The standard approach for variable
selection in a linear model is to use LASSO. However, as declared previously, it
has not guaranteed to work with highly correlated data (Hastie et. al., 2009).
Furthermore, it cannot be applied to the kernel regression. Consequently, as
brute force as it might appear, the variable selection procedure used throughout
this work was Best Subset.

Best Subset grabs all the subsets that p predictors might generate, tests each
of them and then selects the best performing one. This algorithm is not efficient
since the number of subsets grows exponentially to the order of 2p. Nonetheless,
the procedure yields the optimal and for the context of this work it was still
manageable. Testing 215 = 32, 768 linear regressions in a personal computer
takes approximately 1 minute for the ARI weekly data (N = 218). Additionally,
this algorithm can be employed for the kernel regression. Due to the curse of
dimensionality, and given the size of the training data, it was only needed to
test at most 4 predictors. However, they were selected from a bag of 20 different
predictors which added to(

20

1

)
+

(
20

2

)
+

(
20

3

)
+

(
20

4

)
= 6, 192

different model propositions (this took roughly 1 hour). There are more sophis-
ticated variable selection algorithms for the kernel regression as seen in (Dudek,
2012). There they use reinforcement learning to create a tournament where the
features compete to be included. Nonetheless, the author of this work falls short
on those topics.
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4 Results

In this section it will be shown the quantitative and qualitative results for each
of the three analyses (the ARI cases, the unemployment rate and the homicides
committed). The overall structure of the exposition is the following. First, a
descriptive exploration of the data will be performed. This will set the relevant
context for each analysis. The goal is to show trends present in the data, to
discuss any unusual events and to exhibit correlation between the search terms
and the target times series. Second, the test predictions will be evaluated against
the metrics motivated in the past section. This will provide a quantitative im-
provement of incorporating the Google’s search terms as predictors. Third, the
test residuals of each model will be examined and compared against the baseline
model residuals. The ideal behavior for the residuals is to follow a symmetric
distribution, with light tails and centered at zero with the lowest variance pos-
sible (similar to a normal distribution). Symmetry reveals that the model is
not systematically over or under estimating the target variable. The lightness
of the tails indicates that the predictions do not make severe mistakes (for ex-
ample, that the target increased 10% and the prediction was a 10% decrease).
Moreover, the low variance concentration at zero is a reflection of the model’s
accuracy. Finally, a study of the prediction versus actuals plots will uncover
qualitative details bypassed by the previous tests. For example, these plots will
expose if the highest errors are done at the end of the test sample which signals
a loss in predictive power of the model.

4.1 ARI Cases Results

4.1.1 Data Exploration

The Acute Respiratory Infections in Mexico follow the next seasonal behavior
from 2009 up to 2015

34



The ARI time series possesses two distinctive characteristics: it has strong
seasonal effects but is nonetheless stationary. As seen from the constant value of
the rolling mean, the seasonal highs are compensated by the lows. In terms of
seasonality, every year, there is a continuous increase of cases on winter which
ultimately peaks around December - February. However, past that time, the
number of cases sharply plummets, reaching its lowest values during summer
time. The outlier present in 2009 is due to the influenza pandemic in Mexico,
which explains the over a 100% increase from the yearly mean. On a good note,
since the ARI time series is in absolute numbers. Then since roughly 2011 there
has been a continuous decrease in per capita cases.
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As mentioned in the data section, the Google Trends search terms for this
analysis fall into two categories. The ones related with influenza topics (INFLU )
and the ones related with the common flu and its medications (FLU ). Below is a
graph that plots together the normalized ARI cases with the normalized values
of the Google Indexes; where both series are normalized to have mean zero and
standard deviation of one. The idea is to visually see how the movements between
the time series follow each other. It is not necessary that the time series have
the same values but rather that they share the same valleys and peaks.
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Regarding both plots, it can be seen that in terms of seasonal movements,
both influenza and flu search activity follows closely the ARI time series. How-
ever, there is a large amount of noise and volatility present in the Google Trends
data. A clear example being the tremendous winter surges of flu activity which
does not necessarily translate in as many cases. Or the continuous ups and downs
from week to week on the influenza time series.

4.1.2 Test Evaluation Results

The following table summarizes the absolute and percentage improvements in
evaluation error of incorporating Google Trends indexes as predictors. LM de-
notes Linear Model whereas KM denotes Kernel Model. Also wo GT implies
that the model is without the Google Trends predictor while w GT implies that
the model includes it 4.

4The set of predictors for each model is the following. For LM wo GT the predictors are
yt−4 and yt−12. For LM w GT: yt−4, yt−12, FLUt and INFLUt. For KM wo GT: yt−4 and
yt−12 . For KM w GT: yt−4, yt−12 and FLUt. Note that these were the predictors selected
by best-subset using MAE as the evaluation metric.
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Models RMSE % MAE %
LM wo GT 0.74 0.57
KM wo GT 0.70 5 0.47 18
LM w GT 0.48 35 0.39 32
KM w GT 0.47 36 0.35 39

In this scenario, there is an enormous improvement of over 30% for introducing
the Google Trends indexes into either the linear autoregressive model or the
kernel autoregressive model as predictors. Specially in terms of MAE, the best
model is able to cut down the baseline by 40%. Regarding the first two models
(which do not use Google’s search terms) there is a noticeable improvement from
moving into the nonparametric approach. The benefit in MAE is higher than in
RMSE since the last is driven by outlier mistakes that both the nonparametric
model and the baseline model commit. Nonetheless, the model improvements
cannot outweigh the benefits of including relevant predictors. With the addition
of the Google Trend’s data, the linear autoregressive model is able to surpass
the initial nonparametric approach. However, the best results are obtained after
combining both benefits: introducing the Google’s predictors and moving into
a nonparametric approach. In terms of MAE, there is a 7% improvement by
moving into the nonparametric approach. It is not a large improvement as before
since the Google Trend’s predictors may not have such a non-linear relationship
with the response that the kernel regression can take advantage.

4.1.3 Test Residuals Examination

Below is the histogram of the test residuals for the nonparametric models with
and without the Google Trend’s information. They will be denoted as KMBase

and KMGT respectively. We do not compare the nonparametric approach with
the baseline model to isolate the benefits of including the search terms as pre-
dictors from the effects that result from improving the model specification.
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There is a significant improvement from incorporating the Google Trend’s
predictors. The greatest benefit comes from the KMGT model not committing
the large outlier mistakes that the KMBase model does; this translates into the
lighter tails from the estimated density of KMGT . Also, related to the previous
observation, the residuals are more concentrated around zero. However, there
are no benefits in terms of symmetry; even when committing outlier mistakes
the KMBase model is not biased to under or over estimate.
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4.1.4 Prediction versus Actuals

In general, it is evident that the kernel regression model follows more tightly
the actual values than the baseline model. Both models depend on previous lags,
however, since the baseline model does not have any other predictor that might
indicate a possible trend switch it makes enormous mistakes as seen in 2014-02
and 2014-09 where it essentially repeats previous periods movements. Contrary
to this, the Google Index helps the kernel regression correctly anticipate the
rise of activity on both 2014-02 and 2014-09. This is essentially the benefits of
nowcasting with Google’s searches: anticipating trend changes when they start
to occur.

4.1.5 Implementation Improvements

Below are two graphs that compare different implementations of the kernel re-
gression. The first plot shows our proposed implementation (which was discussed
in the past section). The second shows the results from the statsmodels imple-
mentation in Python.
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As it can be seen above, our implementation performs significantly better in
the train sample. It is able to hit the peaks of 2011 and, notably, 2013. Whereas,
for that period, the statsmodels implementation moves in the opposite direc-
tion. In terms of the test sample, our implementation performs only slightly
better. For example, it is able to approximate better the valley at the end of
2014.

4.2 Unemployment Rate Results

4.2.1 Data Exploration

The Mexican urban monthly unemployment rate has the following behavior

41



Through 2005 and 2009 the unemployment rate appeared to be in a state
where its yearly mean value oscillated close to 4.5% (with peaks and valleys
that compensated themselves). The sharp increased experience during 2009-
2010 is a reflection of the 2008 American financial crisis which took some time
to materialize in the Mexican market. This sharp increase set the economy from
2011 up to 2015 in a state whose yearly mean value was roughly over 6%. From
2015 to 2017 the labor economy has experienced a consistent recovery over time
reaching historically low levels in the end of 2017.

As stated in the data section the Google Trends data for this analysis con-
tains all the search terms included in the Employment - Topic. The most rele-
vant search terms for this topic being: empleo, portal empleo, occ, bolsa de

trabajo, computrabajo and empleo.gob. Below is a graph that compared the
normalized unemployment rate time series versus the normalized Google Trends
data. Both time series are normalized to have mean zero and standard deviation
of one. This is done so that time series could be plotted together.
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What is most important from the plot above is that the time series share
the same valleys and peaks rather than to necessarily follow themselves closely.
For example, throughout 2012-2015 the Google Index is consistently above the
unemployment rate; nonetheless, they mostly move in the same directions. As
it can be seen above, the Google Trends index is not perfect. There are pe-
riods where the time series follow themselves closely such as from 2006-2008,
2009-2012, but for some other periods they have large discrepancies like in 2009
where the unemployment rate sharply increases but the search activity sharply
decreases. This happens in 2017 but at a lesser degree. Despite this, the favor-
able cases are more prevalent and hence the Google Trend’s index is a valuable
predictor as it will be seen below.

4.2.2 Test Evaluation Results

The following table summarizes the improvements (as well as its percentage de-
crease in evaluation error) of incorporating the Google Trends indexes as predic-
tors into the best linear autoregressive model. Again, LM denotes Linear Model
whereas KM denotes Kernel Model. Also wo GT implies that the model is with-
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out the Google Trends predictor while w GT implies that the model includes it
5.

Models RMSE % MAE %
LM wo GT 0.5056 0.3956
LM w GT 0.4031 20 0.3095 20

4.2.3 Test Residuals Examination

Below is the histogram of the test residuals for both the linear autoregressive
model that incorporates the Google Trends data and the linear autoregressive
baseline model without this data. For this discussion, let’s denote the first model
as LMGT and the baseline model as LMBase.

5The set of predictors for each model is the following. For LM wo GT: yt−1, yt−2, yt−3,
yt−9, yt−10 and yt−11. For LM w GT: yt−1, yt−2, yt−3, yt−9, yt−10, yt−11 and EMPt. These
were the lags selected by best subset using MAE as the evaluation metric.
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There is a strong benefit of incorporating the GI as a predictor. In terms
of symmetry, is appears as if the residuals from LMBase are biased to the left,
which indicates a systematic underestimation of this model. The residuals from
LMGT almost fix this bias however retaining a slight tilt of underestimation. This
scenario suggests that there is a predictor missing in LMBase that is correlated
with the search terms in LMGT that resolve the underestimation issue. Moreover,
including the GI’s also makes the tails from the estimated density converge earlier
than the tails from the estimated density for LMBase. Finally, the residuals from
the LMGT are visibly more concentrated at zero.
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4.2.4 Prediction versus Actuals

In general, it is evident that the actual unemployment rate has a higher
variance that the linear models are not able to predict or follow immediately.
However, the linear model that incorporates the Google Trends data gains more
agility to pivot either upwards or downwards with the data. For example, around
2016-06 the blue line is able to decrease more abruptly than the grey dashed line.
Again, after the beginning of 2017, the blue line is able to shift more sharply
into an increasing trend and finally, around 2017-06 when the grey line starts to
catch up, the blue line again is able to drop faster for the last periods.

4.3 Homicide Cases Results

4.3.1 Data Exploration

The homicide cases for Mexico City has the subsequent pattern
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From 2004 up until closely 2010 the homicide yearly rolling mean had a
value under 110 (definitely, 2007 is a data error). However, right after 2011 an
increasing trend starts to gain momentum. It is understandable that a time
series such as this would bear an increasing trend due to the population growth
and city migration. Nonetheless, there is a close to a 7% yearly growth in the
homicide activity. This by far surpasses any natural growth, especially since this
time series does not contain any information of Estado de Mexico (a surrounding
neighboring state that carries a high criminal activity). We have not read any
plausible hypothesis of why this is happening and have intentionally left any
discussions about this topic out of the current work. The spikes and valleys do
not follow a seasonal pattern. In some years the activity concentrates from July
to October, but on some other years from January to April. Overall, we see
a sharply increasing trend that has increased variance over time that does not
possess any seasonal patterns.

As mentioned previously in the data section here the Google Trends data
contains a unique search term horarios misa which translates to church mass
schedules. Below is the well-known graph that compares the normalized time
series of both the homicide cases and the search term
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The above plot does not follow the tight pattern perceived in the previous
analysis. However, from 2013 to the end of 2015 the time frames chase each
other. Yet again, from 2016 until 2017 the search term appears to lose predictive
power, with a huge false positive on December 2015. It is worth pointing out that
since this data has a 1 year reporting lag, then the effort of finding a predictor
search term is really valuable.

4.3.2 Test Evaluation Results

The following table summarizes the absolute and percentage improvements in
evaluation error of incorporating Google Trends indexes. LM denotes Linear
Model whereas KM denotes Kernel Model. Also wo GT implies that the model is
without the Google Trends predictor while w GT implies that the model includes
it 6.

6The set of predictors for each model is the following. For LM wo GT: yt−1, yt−2 and yt−6.
For LM w GT: yt−1, yt−2, yt−6 and GIt. Where GI stands for Google Index. Note that these
were the predictors selected by best-subset when using MAE as evaluation metric.

48



Models RMSE % MAE %
LM wo GT 0.83 0.62
LM w GT 0.59 29 0.46 26

From the table above, it appears as if there was a large improvement of incor-
porating the Google Trend Index as predictor. Notwithstanding, the improve-
ment is actually a result of the poor performance of the baseline, not really on
the splendid performance of the last model. A MAE of 0.62 is clearly the worst
performing baseline when compared with the other models. Thus even adding
a rough predictor would improve the model. Yet, the question of whether the
search term adds predictive value does find positive evidence from the results
above.

4.3.3 Test Residuals Examination

Below is the histogram of the test residuals for both the linear autoregres-
sive model including the search term (LMGT ) and the baseline model without
(LMBase).
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As it can be seen above there is a massive qualitative improvement of adding
the search term as predictor. In terms of symmetry, LMGT appears to be un-
biased while LMBase is systematically underestimating the actual values. Fur-
thermore, the residuals from LMGT do concentrate more around 0. Nonetheless,
the tails of both estimated densities are quite heavy; hinting that the model is
not properly is making relevant mistakes and thus has a high variance.
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4.3.4 Prediction versus Actuals

It is undisputable that the blue model loses predictive power at the end of the
time frame. However, it does predict a higher activity than the model in grey,
thus in this sense, it is more accurate. At least it does predict the overall increase
of activity. However, it does not carry the necessary information to predict the
huge spikes seen from 2016 and 2017.
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5 Conclusions

Relating back to the central question of this work, we find evidence that using
internet search queries can help nowcast different variables. For all analyzed
cases, we find an over 20% improvement in test accuracy when compared to
the baseline model7. Thus, for these three specific variables, authorities (like
Banxico8 or Secretaria de Salud) could enrich their predictive models and in-
crease their response time by following the activity of the search terms analyzed.
Nonetheless, the predictive power of these search terms needs to be constantly
tested. Due to the intrinsic noise and nature of internet activity, it cannot be
guaranteed that the search terms will maintain their usefulness overtime. Thus,
rather than providing specific search terms for authorities, the present work dis-
plays the advantage of incorporating real-time internet search activity into the
authorities’ toolkit.

Likewise, the present work presents the benefits of employing the kernel re-
gression as a nonparametric model alternative. In the ARI cases, it shows a
7% test improvement over the linear alternative. Also, our multivariate proof
exhibits the weaknesses of this nonparametric method. Namely, the dimension
constraints and the large information requirements. Finally, we discuss how using
a different cross-validation strategy is more suitable for small to medium sam-
ples. Regarding implementation, we find better results when optimizing with the
conjugate gradient algorithm than with the standard derivative-free methods.

Finally, there are two main avenues to further enhance this work. The first
avenue relates to implementation improvements. In terms of variable selection,
Best Subset is not a scalable algorithm. For the linear models there are efficient
alternatives such as the Lasso regression. However, in the literature there is
not a standard variable selection algorithm for the kernel regression and, due to
the curse of dimensionality, it is of crucial importance. Moreover, neither our
numerical strategy nor the standard derivative-free algorithms are guaranteed to
converge to a global maximum since the objective function is not forced to be
convex. Thus, there might be a numerical algorithm that loses generality that
leveraging on the structure of the problem guarantees a global optimum. The
second avenue relates to the granularity of the analyses performed. For Mexico,
the Google Trends data comes at a state level and up to an hour-by-hour time

7It is worth mentioning that this result might be inflated by a weak baseline. Nonetheless,
the AR models are the literature’s standard.

8Mexico’s Central Bank
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frequency. Therefore, if we trust that are our national predictors do reflect the
same reality at a lower geographical level and higher time frequency, then we
could gain significant information that is currently not gathered. For example, if
we believe that people all around Mexico use the internet when looking for jobs9,
then we could nowcast a weekly state level unemployment rate which is currently
not gathered. In principle, even if our nowcasting predictors are correct we could
never prove this since the actual variable is not reported. However, INEGI could
execute a one-off exercise on a sample of states and at the weekly level to assess
how the nowcasting predictors perform.

9Let’s not forget that states like Oaxaca or Chiapas have a lower internet use and penetration
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A Appendix

The Appendix serves two purposes. The first is to remind the reader some useful
definitions and classical results (1.1 - 1.3). The second is to present all the
essential propositions required to prove that the kernel regression could learn all
regression functions (1.4 - 1.7).

A.1 Modes of Convergence

Following are some standard notions of convergence for random variables. Since
we are dealing with random samples, we can only guarantee convergence in the
terms below.

Definition 1 Convergence in Probability. Let (Xn)
∞
n=1 be a sequence of real

random vectors and let X be a random vector. We say that Xn converges to X
in probability if, for all ε > 0 we have that

P (‖Xn−X‖ < ε) −→ 1, as n→ +∞

Definition 2 Convergence in rth Mean. Let (Xn)
∞
n=1 be a sequence of real

random vectors and let X be a random vector with r > 0, we say that Xn

converges to X in rth mean if

E [‖Xn−X‖r] −→ 0, as n→ +∞

Beneath are some classical results from Measure Theory that will be used
in the convergence proof for kernel regression. For a proof of the results below
consult (Royden, 2010). These results are contextualized for probability measure
spaces.

Definition 3 Lp Space. For a given p ∈ (0,+∞) we say that a Lebesgue mea-
surable function f belongs to Lp if

E [|f |p]
1
p < +∞

Theorem 4 Hölder’s Inequality. Let W and Z be two real random variables.
If p ∈ (1,+∞) and q ∈ (1,+∞) such that 1/p+ 1/q = 1 then

E [|WZ|] ≤ E [|W |p]
1
p E [|Z|q]

1
q
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Theorem 5 Lebesgue’s Dominated Convergence Theorem. If Xn −→ X
in probability and if |Xn| ≤ Y (almost surely), where E [Y r] < +∞, then

E [|Xn −X|r]→ 0 and E [Xr
n]→ E [Xr]

A.2 Big-O and Little-o Arithmetic’s

The Big-O and Little-o notation is quite handy for dealing with upper bounds
on approximation theory. Let’s define these notions properly.

Definition 1 Big-O notation. Let an be a sequence. We say that an = O (bn)
if there exists a N ∈ N and a positive constant C such that

an ≤ Cbn, for all n ≥ N

Definition 2 Little-o notation. Moreover, we say that an = o (bn) if

an
bn
−→ 0 as n→ +∞

To honor the name of the section, below are some useful lemmas that will
be used in the following sections. These lemmas are tailored to look as they will
appear, nonetheless, the results hold more generally.

Lemma 3 Power Lemma. Let γ ∈ (0,+∞) then

[o (‖hn‖α)]
γ

= o (‖hn‖αγ)

Proof. By continuity

lim
n+∞

aγn
‖hn‖αγ

=

(
lim

n→+∞

an
‖hn‖α

)γ
= 0

Lemma 4 Multiplication Lemma. Let ‖hn‖ → 0 and α, β be two positive
numbers. Then

O (‖hn‖α) o
(
‖hn‖β

)
= o

(
‖h‖α+β

)
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Proof. Let an be an arbitraryO (‖hn‖α) sequence and bn an arbitrary o
(
‖hn‖β

)
sequence. Then

0 ≤ lim
n→+∞

|anbn|
‖h‖α+β

≤ lim
n→+∞

Ca ‖h‖α

‖h‖α
bn

‖h‖β
= 0

Lemma 5 Addition Lemma. Let ‖hn‖ → 0 and α, β be two positive numbers.
Then

o (‖hn‖α)± o
(
‖hn‖β

)
= o

(
‖hn‖min(α,β)

)
Proof. Let an be an arbitrary o (‖hn‖α) sequence and bn be an arbitrary

o
(
‖hn‖β

)
sequence. Thus,

0 ≤ lim
n→+∞

|an + bn|
‖hn‖min(α.β)

≤ lim
n→+∞

|an|
‖hn‖α

+ lim
n→+∞

|bn|
‖hn‖β

A.3 Taylor Expansions

One of the most useful results from calculus, both for theoretical proofs and
practical applications, is Taylor’s Theorem. For us e is a beautiful transcendental
number but for the computer it is not but a Taylor expansion of the following
sort

e = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+Rn, where 0 < Rn <

3

(n+ 1)!

which can be approximated as precisely as needed. As stated above, it is also a
useful theoretical tool that comes handy quite often in statistics.

Theorem 1 First-Order Taylor Expansion. Properly, let f : Rp 7→ R be
differentiable in an open set U . Then, for x0 and x0+h ∈ U

f (x0+h) = f (x0) +∇f (x0)
T

h + o (‖h‖)

= f (x0) +

p∑
i=1

hifi (x0) + o (‖h‖)
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Theorem 2 Second-Order Taylor Expansion. Now let f (·) be two times
differentiable in an open set U , then we have

f (x0+h) = f (x0) +∇f (x0)
T

h + (1/2)hT∇2f (x0) h + o
(
‖h‖2

)
= f (x0) +

p∑
i=1

hifi (x0) +
1

2

p∑
i,j=1

hihjfij (x0) + o
(
‖h‖2

)
Although the vector formulation is more elegant, our workhorse will be the

element-wise formulation. For a proof consult a classical calculus book such as
Marsden’s Vector Calculus (Marsden, 2012).

Following are some analytical expressions for the Taylor Expansion of multi-
plying functions. These cases will constantly appear in the following sections.

Corollary 3 First Multiplicative Taylor Expansion. Let f : Rp 7→ R and
g : Rp 7→ R be two times differentiable at U and both x0, x0+h ∈ U . Then a
first order approximation to f (x0+h) g (x0+h) is

f (x0) g (x0) + f (x0)

p∑
r=1

hrgr (x0) + g (x0)

p∑
i=1

hifi (x0)

+

p∑
i,r=1

hihrfi (x0) gr (x0) + o (‖h‖)

Corollary 4 Second Multiplicative Taylor Expansion. Let f : Rp 7→ R
and g : Rp 7→ R be three times differentiable at U and both x0, x0+h ∈ U . A
second order approximation to f (x0+h) g (x0+h) is

f (x0) g (x0) + f (x0)

p∑
r=1

hrgr (x0) + g (x0)

p∑
i=1

hifi (x0)

+

p∑
i,r=1

hihrfi (x0) gr (x0) +
1

2
g (x0)

p∑
i,r=1

hihjfij (x0)

+
1

2

p∑
i,j,r=1

hihjhrfij (x0) gr (x0) + o (‖h‖)
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Corollary 5 Quadratic Multiplicative Taylor Expansion. Let f : Rp 7→ R
and g : Rp 7→ R be differentiable at U and both x0, x0+h ∈ U . A second order
approximation to [f (x0+h)− f (x0)]

2
g (x0+h) is

g (x0)

p∑
i=1

h2i f
2
i (x0) +

p∑
r,i=1

hrh
2
i gr (x0) f2i (x0) + 2g (x0)

p−1∑
i=1

p∑
j=i+1

hihjfi (x0) fj (x0)

+ 2

p∑
r=1

p−1∑
i=1

p∑
j=i+1

hrhihjgr (x0) fi (x0) fj (x0) + o (‖h‖)

Proof. Use the fact that(
p∑
i=1

xi

)2

=

p∑
i=1

x2i + 2

p−1∑
i=1

p∑
j=i+1

xixj

A.4 Kernel Functions

This section serves two purposes. The first is to expose the formal definition of
a kernel function and to show their properties. The second is to exhibit some
examples of these functions.

A.4.1 Kernel Definition

An univariate kernel is a function from R to R that

• Preserves constant functions10.
∫
K (v) dv = 1

• Is symmetric. K (v) = K (−v)

• Has finite second moment. κ $
∫
v2K (v) dv ∈ (0,+∞)

• Belongs to L2. ω $
∫
K (v)

2
dv ∈ (0,+∞)

• Has finite second moment in L2. ρ $
∫
v2K (v)

2
dv ∈ (0,+∞)

10If f (x) = c then
∫
f (v)K (v) dv = c
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Relevant Integration Property Note that due to the second property
(symmetry) there is a relevant integration property∫

vlK (v)
q
dv = lim

a→∞

[∫ 0

−a
vlK (v)

q
dv +

∫ a

0

vlK (v)
q
dv

]
(definition)

= lim
a→∞

[
−
∫ 0

a

(−w)
l
K (−w)

q
dw +

∫ a

0

vlK (v)
q
dv

]
(v = −w)

= lim
a→∞

[
−
∫ a

0

wlK (w)
q
dw +

∫ a

0

vlK (v)
q
dv

]
(symmetry)

= 0

for all odd integers l and all q.
To extend the kernel definition for the multivariate case there are two alter-

natives. To treat K (·) as a product of univariate kernels or to properly define
a multivariate kernel with some desirable behavior. For the discussion below,
define the following constants for different integrals

σi $
∫
viK (v) dv

σij $
∫
vivjK (v) dv

σijk $
∫
vivjvkK (v) dv

Product Kernel Define K : Rp → R as a product of independent univari-
ate kernels for each variable

K (v) $
p∏
i=1

Ki (vi)

Note that the following properties result as a consequence of the above definition.
Each individual kernel integrates independently∫

K (v) dv−i = Ki (vi)

Moreover,

σij =

{
0 if i 6= j
κ if i = j
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also
σi = 0 = σijk

and finally, along the same lines,∫
K (v)

2
dv = ωp

since each univariate kernel independently integrates to ω.

Joint Multivariate Kernel If we are to define a joint multivariate kernel
then we would require the following∫

K (v) dv = 1∫
K (v)

2
dv< +∞

also that σij ∈ (0,+∞) (not necessarily 0 for cross terms) and finally that
σi = 0 = σijr.

An example of such a kernel would be a multivariate normal density with
nonzero correlation between variables centered at zero. Note that this general
setting is only used in the Density Estimation section. For the regression analysis
we employ product kernels to simplify the expressions and make the book keeping
more manageable.

A.4.2 Kernel Examples

In principle all symmetrical densities are candidates to be kernels (clearly assum-
ing that they also have a finite second moment and belong to L2). Nonetheless,
the only two densities that are commonly found in the literature are the Uniform
and the Gaussian.

K (v) =
1

2
I[−1,1] (v) (Uniform)

K (v) =
1

2π
e

−1
2 v2 (Gaussian)
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There are also two popular kernels found in the literature.

K (v) =
3

4

(
1− v2

)
I[−1,1] (v) (Epanechnikov)

K (v) =
(

1− |v|3
)3
I[−1,1] (v) (Tri-cube)

The differences between these kernels can be seen in the following plot

As seen above, the Tri-cube kernel concentrates the most density around 0
and it is differentiable at the boundaries.

Notice that except for the Gaussian kernel, all others have a compact support.
Succinctly, a compact support creates an influence cut-off point and restrains
continuous functions. Remember that the goal of the kernel is to assign higher
relevance to observations close to the target. A compact support completely elim-
inates all the influence from observations dimmed distant. Moreover, since con-
tinuous functions attain their minimum and maximum value in compact sets, a
compact support bounds the influence of the derivatives of µ (x) $ E [Y |X = x].
This last point will be clearly illustrated in the next section.
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A.5 A Note on Integrating Taylor Expansions with Ker-
nels

In the next section we will constantly integrate, against a kernel, the residual
terms from the Taylor expansion of either the density f (·), the regression func-
tion µ (·) or both multiplied.

To motivate the discussion let’s expand a generic function g (x + v � h)
around x, where � denotes element-wise multiplication. Using the results from
the Taylor Expansion section we have that

g (x + v � h) = g (x) +

p∑
i=1

hivigi (x) +
1

2

p∑
i,j=1

hihjvivjgij (x) + o
(
‖v � h‖2

)
where the residual has the following shape

o
(
‖v � h‖2

)
=

1

3!

p∑
i,j,k=1

hihjhkvivjvkgijk (x̃ijk)

and
x̃ijk ∈ B‖v�h‖ (x) $ {z : ‖z− x‖ ≤ ‖v � h‖}

We will face the challenge to integrate this residual against the kernel. Mathe-
matically, ∫

o
(
‖v � h‖2

)
K (v) dv

Thus, the objective of the section is to discuss the conditions that guarantee the
equation below ∫

o
(
‖v � h‖2

)
K (v) dv =o

(
‖h‖2

)
For this, fix x0 and h0 and define the following functions implicitly φijk : Rp → R
as

g (x0+v � h) = g (x0) +

p∑
i=1

hivigi (x0) +
1

2

p∑
i,j=1

hihjvivjgij (x0)

+
1

3!

p∑
i,j,k=1

hihjhkvivjvkφijk (v)
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where for each v

φijk (v) = gijk (x̃ijk) , with x̃ijk ∈ B‖v�h0‖ (x0)

and each φijk (·) inherits continuity. The question then becomes, what guarantees
that the following integral makes sense

1

3!

p∑
i,j,k=1

hihjhk

∫
vivjvkφijk (v)K (v) dv

The easiest way to escape from this problem would be to require g (·) to have
bounded derivatives. Then the integral

1

3!

p∑
i,j,k=1

hihjhk

∫
vivjvkφijk (v)K (v) dv ≤ 1

3!

p∑
i,j,k=1

hihjhkM

∫
vivjvkK (v) dv

However, asking for bounded derivatives totally disregards the annihilating power
of the kernel function. From the previous kernel examples, all could deal with
derivatives that increase at a polynomial rate. Moreover, the ones with compact
supports can deal with more unwanted behavior. Since all φijk (v) are continuous
on [−1, 1]

p
then they will attain their minimum and maximum. Formally,∫

vivjvkφijk (v)K (v) dv ≤max
ijk
|φijk (v∗)|

∫
[−1,1]p

vivjvkK (v) dv

Additionally, in cases where g (·) = µ (·), we disregard concave functions like
µ (x1, x2) = xα1x

1−α
2 that usually appear in production economics but have un-

bounded derivatives.
In conclusion, our implicit requirement for the following propositions is that

the kernel is sufficiently strong to bound the behavior of the derivatives of f (·),
µ (·) or both multiplied.

A.6 Useful Propositions

Following is a series of propositions that constitute the step-by-step elements for
the different convergence proofs.
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Proposition 1 Density Expectation. Let x be an interior point of the support
of X. Assume that the density f (·) ∈ C3 (Rp).Then

E
[
K
(
(X− x)� h−1

)]
h1 · · ·hp

= f (x) +
1

2

p∑
i,j=1

hihjfij (x)σij + o
(
‖h‖2

)
where K (·) is a multivariate kernel and σij =

∫
vivjK (v) dv.

Proof. By definition we have that

E
[
K
(
(X− x)� h−1

)]
h1 · · ·hp

=
1

h1 · · ·hp

∫
K
(
(z− x)� h−1

)
f (z) dz

=
1

h1 · · ·hp

∫
· · ·
∫
K

(
z1 − x1
h1

, · · · , zp − xp
hp

)
f (z1, . . . zp) dz1 · · · dzp

=

∫
· · ·
∫
K (v1, · · · , vp) f (x1 + v1h1, . . . xp + vphp) dv1 · · · dvp

=

∫
K (v) f (x + v � h) dv

due to the change of variables zi = xi+vihi. If we Taylor expand f (x0 + v � h)
around x the above integral becomes

f (x)

∫
K (v) dv +

p∑
i=1

fi (x)hi

∫
viK (v) dv+

1

2

p∑
i,j=1

fij (x)hihj

∫
vivjK (v) dv+

∫
o
(
‖v � h‖2

)
K (v) dv

and due to the kernel properties, the above expression reduces to

f (x) +
1

2

p∑
i,j=1

hihjfij (x)σij + o
(
‖h‖2

)
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Proposition 2 Density Square Bias. Let x be an interior point of the support
of X and ‖h‖ < 1. Assume that the sample is identically distributed from the
density f (·) ∈ C2 (Rp). Then

E

[∑n
i=1K

(
(Xi−x)� h−1

)
nh1 · · ·hp

− f (x)

]2
=

1

2

p∑
i,j=1

hihjfij (x)σij

2

+ o
(
‖h‖4

)
where K (·) is a multivariate kernel and σij =

∫
vivjK (v) dv.

Proof. Since the sample is identically distributed then

E

[∑n
i=1K

(
(Xi−x)� h−1

)
nh1 · · ·hp

− f (x)

]
=
E
[∑n

i=1K
(
(Xi−x)� h−1

)]
nh1 · · ·hp

− f (x)

=
E
[
K
(
(X− x)� h−1

)]
h1 · · ·hp

− f (x)

By the previous proposition we have that the past expression equals

=
1

2

p∑
i,j=1

hihjfij (x)σij + o
(
‖h‖2

)
Therefore, squaring the past term yields

1

2

p∑
i,j=1

hihjfij (x)σij + o
(
‖h‖2

)
=

=

1

2

p∑
i,j=1

hihjfij (x)σij

2

+

p∑
i,j=1

hihjfij (x)σijo
(
‖h‖2

)
+ o

(
‖h‖4

)
note that the middle term is O

(
‖h‖2

)
o
(
‖h‖2

)
therefore o

(
‖h‖4

)
as in the

multiplication lemma.

Proposition 3 Density Second-Moment. Let x be an interior point of the
support of X. Assume that the density f (·) ∈ C2 (Rp). Then

E
[
K
(
(X− x)� h−1

)2]
h1 · · ·hp

= f (x)ω + o (‖h‖)
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where ε2 (x) = E
[
ε2|X = x

]
, K (·) is a product kernel and therefore ω =∫

viK (v)
2
dv.

Proof. Expanding the expectation and making the standard change of variables
we have

E
[
K
(
(X− x)� h−1

)2]
h1 · · ·hp

=

∫
K (v)

2
f (x + v � h) dv

Taylor Expanding f (x + v � h) around x to a first order yields

f (x)

∫
K (v)

2
dv +

p∑
i=1

fi (x)hi

∫
viK (v)

2
dv

+

∫
o (‖v � h‖)K (v)

2
dv

Proposition 4 Density Variance. Let x be an interior point of the support
of X and ‖h‖ < 1. Assume that the sample is independent and identically
distributed from the density f (·) ∈ C2 (Rp). Then

var

(∑n
i=1K

(
(Xi−x)� h−1

)
nh1 · · ·hp

)
=

f (x)ω

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
where ε2 (x) = E

[
ε2|X = x

]
, K (·) is a product kernel and therefore ω =

∫
viK (v)

2
dv.

Proof. Since the sample is independent and identically distributed then

var

(∑n
i=1K

(
(Xi−x)� h−1

)
nh1 · · ·hp

)
=
var

(
K
(
(X− x)� h−1

))
nh21 · · ·h2p

using the fact that var (·) = E[(·)2]− E [(·)]2 the previous variance becomes

=
E
[
K
(
(X− x)� h−1

)2]
nh21 · · ·h2p

− 1

n
E

[[
K
(
(X− x)� h−1

)]2
h1 · · ·hp

]2

=
E
[
K
(
(X− x)� h−1

)2]
nh21 · · ·h2p

− o
(
n−1 ‖h‖3

)
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by applying the proposition for the square bias. Now using the previous propo-
sition this last equation becomes

=
f (x)ω

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
since o

(
(nh1 · · ·hp)−1 ‖h‖

)
is larger than o

(
n−1 ‖h‖3

)
.

Proposition 5 Regression Bias. Let x be an interior point of the support of
X. Assume that the density f (·) ∈ C3 (Rp). Then

E
[
K
(
(X− x)� h−1

)
(µ (X)− µ (x))

]
h1 · · ·hp

=

=
f (x)κ

2

p∑
r=1

h2r

[
2µr (x) fr (x)

f (x)
+ µrr (x)

]
+ o

(
‖h‖2

)
where µ (x) $ E [Y |X = x], K (·) is a product kernel and therefore κ =

∫
v2iK (v) dv.

Proof. Again, applying the usual change of variables vi = xi + vihi and writing
the integral of the expectation we have that

E
[
K
(
(X− x)� h−1

)
(µ (X)− µ (x))

]
h1 · · ·hp

=

=

∫
K (v) (µ (x + v � h)− µ (x)) f (x + v � h) dv

now applying the second Taylor expansion for multiplying functions we have

= f (x)

p∑
i=1

hiµi (x)

∫
viK (v) dv+µ (x)

p∑
r=1

hrfr (x)

∫
vrK (v) dv

p∑
i=1

p∑
r=1

hihrµi (x) fr (x)

∫
vivrK (v) dv+

f (x)

2

p∑
i=1

p∑
j=1

hihjµij (x)

∫
vivjK (v) dv

+
1

2

p∑
i=1

p∑
j=1

p∑
r=1

hihjhrµij (x) fr (x)

∫
vivjvrK (v) dv+

∫
o
(
‖v � h‖2

)
K (v) dv
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where the only kernel integrals that survive are the ones of the kind κ =
∫
v2iK (v) dv.

Therefore, the past expression reduces to

=

p∑
r=1

κh2rµr (x) fr (x) +
f (x)

2

p∑
r=1

h2rµrr (x)κ+ o
(
‖h‖2

)
=
κf (x)

2

p∑
r=1

h2r

[
2µr (x) fr (x)

f (x)
+ µrr (x)

]
+ o

(
‖h‖2

)

Proposition 6 Regression Square Bias. Let x be an interior point of the
support of X. Assume that the density f (·) ∈ C3 (Rp). Then(

E
[
K
(
(X− x)� h−1

)
(µ (Xi)− µ (x))

]
h1 · · ·hp

)2

= o
(
‖h‖3

)

=

(
p∑
r=1

f (x)κh2r
2

[
2µr (x) fr (x)

f (x)
+ µrr (x)

])2

+ o
(
‖h‖4

)
where µ (x) $ E [Y |X = x], K (·) is a product kernel and therefore κ =

∫
viK (v)

2
dv.

Proof. Applying the past proposition we have that(
p∑
r=1

f (x)κh2r
2

[
2µr (x) fr (x)

f (x)
+ µrr (x)

]
+ o

(
‖h‖2

))2

=

(
p∑
r=1

f (x)κh2r
2

[
2µr (x) fr (x)

f (x)
+ µrr (x)

])2

+

p∑
r=1

f (x)κh2r

[
2µr (x) fr (x)

f (x)
+ µrr (x)

]
o
(
‖h‖2

)
+ o

(
‖h‖4

)
note that since the middle term is O

(
‖h‖2

)
o
(
‖h‖2

)
therefore o

(
‖h‖4

)
as in

the multiplication lemma.
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Proposition 7 Regression Bias Second Moment. Let x be an interior point
of the support of X. Assume that the density f (·) ∈ C3 (Rp). Then

E
[
K
(
(X− x)� h−1

)2
(µ (Xi)− µ (x))

2
]

h1 · · ·hp
= f (x) ρ

p∑
i=1

h2iµ
2
i (x) + o (‖h‖)

where µ (x) $ E [Y |X = x], K (·) is a product kernel and therefore ρ =
∫
v2iK (v)

2
dv.

Proof. Again, integrating the expectation and doing the usual change of vari-
ables we have

E
[
K
(
(X− x)� h−1

)2
(µ (Xi)− µ (x))

2
]

h1 · · ·hp
=

=

∫
K (v)

2
(µ (x + v � h)− µ (x))

2
f (x + v � h) dv

by inputting the last Taylor Expansion for the multiplication of two functions
we have that

= f (x)

p∑
i=1

h2iµ
2
i (x)

∫
v2iK (v)

2
dv

+ 2f (x)

p−1∑
i=1

p∑
j=i+1

hihjµi (x0)µj (x0)

∫
vivjK (v)

2
dv

+

p∑
r=1

p∑
i=1

hrh
2
i fr (x)µi (x)

∫
vrv

2
iK (v)

2
dv

+ 2

p∑
r=1

p−1∑
i=1

p∑
j=i+1

hrhihjfr (x)µi (x)µj (x)

∫
vrvivjK (v)

2
dv

+

∫
o (‖v � h‖)K (v)

2
dv

as in the previous propositions the only terms that remain are of the kind ρ =∫
v2iK (v)

2
dv. Therefore the past equation reduces to

f (x) ρ

p∑
i=1

h2iµ
2
i (x) + o (‖h‖)
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Proposition 8 Regression Estimator Variance. Let x be an interior point
of the support of X and ‖h‖ < 1. Assume that the sample is independent and
identically distributed from the density f (·) ∈ C2 (Rp). Then

var

(∑n
i=1K

(
(Xi−x)� h−1

)
(µ (Xi)− µ (x))

nh1 · · ·hp

)
=

=
f (x) ρ

∑p
i=1 h

2
iµ

2
i (x)

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
where µ (x) $ E [Y |X = x], K (·) is a product kernel and therefore ρ =

∫
v2iK (v)

2
dv.

Proof. Since the sample is independent and identically distributed

var

(∑n
i=1K

(
(Xi−x)� h−1

)
(µ (Xi)− µ (x))

nh1 · · ·hp

)
=

=
var

(
K
(
(X− x)� h−1

)
(µ (X)− µ (x))

)
nh21 · · ·h2p

writing the above variance as a sum of expectation we have that

=
E
[
K
(
(X− x)�h−1

)2
(µ (Xi)− µ (x))

]
nh21 · · ·h2p

− 1

n

(
E
[
K
(
(X− x)�h−1

)
(µ (Xi)− µ (x))

]
nh1 · · ·hp

)2

Applying the relevant propositions the above summands become

=
f (x) ρ

∑p
i=1 h

2
iµ

2
i (x)

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
− o

(
n−1 ‖h‖3

)
Note that since ‖h‖ < 1(

n−1h1 · · ·hp
)−1 ‖h‖ > n−1 ‖h‖3

therefore the term o
(

(nh1 · · ·hp)−1 ‖h‖
)

dominates.
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Proposition 9 Regression Second Error Moment. Let x be an interior
point of the support of X and. Assume that the density f (·) ∈ C2 (Rp). Then

E
[
K
(
(X− x)� h−1

)2
ε2
]

h1 · · ·hp
= ε2 (x) f (x)ωp + o (‖h‖)

where ε2 (x) $ E
[
ε2|X = x

]
, K (·) is a product kernel and therefore ωp =∫

K (v)
2
dv.

Proof. By using the law of total expectation we have that

E
[
K
(
(X− x)� h−1

)2
ε2
]

h1 · · ·hp
=
E
[
K
(
(X− x)� h−1

)2
E
[
ε2|X

]]
h1 · · ·hp

then integrating

=
1

h1 · · ·hp

∫
K
(
(z− x)� h−1

)2
ε2 (z) f (z) dz

by applying the same usual change of variables the past integral transforms to

=

∫
ε2 (x + v � h) f (x + v � h)K (v)

2
dv

now by utilizing the first Taylor expansion for multiplying functions we have

ε2 (x) f (x)

∫
K (v)

2
dv + ε2 (x)

p∑
i=1

hifi (x)

∫
viK (v)

2
dv

+ f (x)

p∑
r=1

hrε
2
r (x)

∫
vrK (v)

2
dv+

∫
o (‖v � h‖)K (v)

2
dv

due to the kernel properties the second and third element are 0 and hence the
expression becomes

= ε2 (x) f (x)ωp + o (‖h‖)
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Proposition 10 Regression Error Expectation. Assume that

E [εi|X1= x1, . . . ,Xn= xn] = 0

then

E

[∑n
i=1K

(
(Xi−x)� h−1

)
εi

nh1 · · ·hp

]
= 0

where K (·) is a multivariate kernel.

Proof. By applying the linear properties of the expectation and due to the law
of total expectation we have

E

[∑n
i=1K

(
(Xi−x)� h−1

)
εi

nh1 · · ·hp

]
=

= E

[∑n
i=1K

(
(Xi−x)� h−1

)
E [εi|X1, . . .Xn]

nh1 · · ·hp

]
= 0

Proposition 11 Regression Error Variance. Let x be an interior point
of the support of X. Assume that the sample is independent and identically
distributed from the density f (·) ∈ C2 (Rp). Then

var

(∑n
i=1K

(
(Xi−x)� h−1

)
εi

nh1 · · ·hp

)
=
ε2 (x) f (x)ωp

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
where ε2 (x) $ E

[
ε2|X = x

]
, K (·) is a product kernel and therefore ωp =∫

K (v)
2
dv.

Proof. Since the sample is independent then the variance distributes sums
therefore

var

(∑n
i=1K

(
(Xi−x)� h−1

)
εi

nh1 · · ·hp

)
=
var

(
K
(
(X− x)� h−1

)
ε
)

nh21 · · ·h2p
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using the variance decomposition of E[(·)2] − E [(·)]2 the above expression be-
comes

=
E
[
K
(
(X− x)� h−1

)2
ε2
]

nh21 · · ·h2p
− 02

nh21 · · ·h2p
where the last term equals zero due to the previous proposition. Applying the
corresponding proposition for the first term results in

=
ε2 (x) f (x)ωp

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)

Proposition 12 First Moment Design Correction. Let x be an interior
point of the support of X. Assume that the sample is identically distributed from
the density f (·) ∈ C2 (R). Then

E

[
(nh)

−1
n∑
i=1

K

(
Xi − x
h

)
(Xi − x)

]
= f1 (x)h2κ+ o

(
h2
)

where K (·) is an univariate kernel and κ =
∫
v2K (v) dv.

Proof. By the linearity properties of the expectation and since the sample is
identically distributed we have

E

[
(nh)

−1
n∑
i=1

K

(
Xi − x
h

)
(Xi − x)

]
=
(
h−1

)
E

[
K

(
X − x
h

)
(X − x)

]
=
(
h−1

) ∫
K

(
z − x
h

)
(z − x) f (z) dz

= h

∫
vK (v) f (x+ vh) dv

applying the change of variables z = x+vh. Taylor expanding f (x+ vh) around
x up to a first order makes the past integral equal

= f (x)h

∫
vK (v) dv + f1 (x)h2

∫
v2K (v) dv + h

∫
o (|vh|)K (v) dv

= 0 + f1 (x)h2κ+ ho (|h|)

due to the kernel properties.
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Proposition 13 Second Moment Design Correction. Let x be an interior
point of the support of X. Assume that the sample is identically distributed from
the density f (·) ∈ C1 (R). Then

E

[
(nh)

−1
n∑
i=1

K

(
Xi − x
h

)
(Xi − x)

2

]
= f (x)h2κ+ o

(
h3
)

where K (·) is an univariate kernel.

Proof. By the linearity properties of the expectation and since the sample is
identically distributed we have

E

[
(nh)

−1
n∑
i=1

K

(
Xi − x
h

)
(Xi − x)

2

]
=

1

h
E

[
K

(
X − x
h

)
(X − x)

2

]
=

1

h

∫
K

(
z − x
h

)
(z − x)

2
f (z) dz

= h2
∫
v2K (v) f (x+ vh) dv

applying the change of variables z = x+vh. Taylor expanding f (x+ vh) around
x up to a first order makes the past integral equal

= h2f (x)

∫
v2K (v) dv + h3f1 (x)

∫
v3K (v) dv + h2

∫
o (|vh|)K (v) dv

= f (x)h2κ+ h2o (h)

A.7 Density Estimation

The idea of kernel regression was pioneered simultaneously by Nadaraya and
Watson in 1964. Both were inspired by kernel density estimation (Hastie et. al.,
2009). Thus, we will prove convergence results for density estimation and then
conclude by motivating how this translates to the idea of regression.

First, let’s motivate the idea of using a kernel function to estimate a density
function. As usual, let F (x) = P [X1 ≤ x1, . . . , Xp ≤ xp] denote the distribution
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function. By the frequentist interpretation of probability, if we take a sample,
then the cumulative distribution can be approximated by

F̂n (x) =
# {Xi such that Xij ≤ xj}

n

Moreover, the density function would then be approximated by (assuming that
the predictors are independent)

f (x) = lim
h→0

P [x1 − h < X1 ≤ x1 + h]

2h
· · · P [xp − h ≤ Xp ≤ xp + h]

2h

Restating the previous equation, we have

f̂n (x) =
# {Xi such that xj − hj ≤ Xij ≤ xj + hj}

n (2h)
p

using the multivariate Uniform kernel, this last expression becomes

f̂n (x) =
1

n (2h)
p

m∑
i=1

I[x−h,x+h] (Xi)

=

∑n
i=1K

(
(Xi−x)� h−1

)
nhp

Let (Xi)
n
i=1 be a random sample from the density defined by f (·) and x,h ∈

Rp, such that h� 0. Our kernel density, as motivated previously, is defined as

f̂n (x) $

∑n
i=1K

(
(Xi − x)� h−1

)
nh1 · · ·hp

where h−1 $
(
h−11 , . . . , h−1p

)T
and � denotes element-wise multiplication of vec-

tors. The central result from this section states that the random number f̂n (x)
converges in L2 to f (x) as n → +∞, ‖h‖ → 0, and nh1 · · ·hp → +∞. For
this, let x be an arbitrary observation, we are now going to split the discussion
in terms of bias and variance

MSE
(
f̂n (x) , f (x)

)
= E

[(
f̂n (x)− f (x)

)2]
= bias

(
f̂n (x) , f (x)

)2
+ var

(
f̂n (x)

)
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By the proposition 2 the square bias equals

bias
(
f̂n (x) , f (x)

)2
= E

[∑n
i=1K

(
(Xi−x)� h−1

)
nh1 · · ·hp

− f (x)

]2

=

1

2

p∑
i,j=1

hihjfij (x)σij

2

+ o
(
‖h‖4

)
whereas by proposition 4 the variance equals

var
(
f̂n (x)

)
= var

(∑n
i=1K

(
(Xi−x)� h−1

)
nh1 · · ·hp

)

=
f (x)ω

nh1 · · ·hp
+ o

(
(nh1 · · ·hp)−1 ‖h‖

)
therefore, the MSE becomes

MSE
(
f̂n (x) , f (x)

)
=

1

2

p∑
i,j=1

hihjfij (x)σij

2

+
f (x)ω

nh1 · · ·hp

+ o
(
‖h‖4 + (nh1 · · ·hp)−1 ‖h‖

)
This last term converges to 0 as, n→ +∞, ‖h‖ → 0 and (nh1, . . . hp)→ +∞.

However, we can minimize the first two leading terms to accelerate this process.
Assume that all hi follow a similar order of magnitude, that is hi = h. Therefore,
the first two summands become

ζ (h) $
h4

4

 p∑
i,j=1

fij (x)σij

2

+
f (x)ω

nhp

solving the first order conditions for this function we have

h3opt

 p∑
i,j=1

fij (x)σij

2

=
pf (x)ω

nhp+1
opt
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and therefore

hopt =

 pf (x)ω

n
[∑p

i,j=1 fij (x)σij

]2


1
p+4

, thus hopt ∝ n−
1

p+4

substituting this choice of hopt yields

MSE
(
f̂n (x) , f (x)

)
= O

(
n

−4
p+4

)
which does show that the convergence of this method does require large amounts
of data.

To motivate how density estimation translates into regression note that nat-
urally

E [Y |X = x] ≈
∫
y
f̂n (x, y)

f̂n (x)
dy

=

∫
y

∑n
i=1K

(
(Xi − x)� h−1

)
(nh1 · · ·hp) f̂n (x)

K

(
Yi − y
hy

)
dy (product kernel)

=

∑n
i=1K

(
(Xi − x)� h−1

)
(nh1 · · ·hp) f̂n (x)

∫
yK

(
y − Yi
hy

)
dy (symmetry)

making the a variable change of v = Yi + hyy yields

=

∑n
i=1K

(
(Xi − x)� h−1

)
Yi

(nh1 · · ·hp) f̂n (x)

therefore the conditional expectation of E [Y |X = x] is estimated by

E [Y |X = x] ≈
∑n
i=1K

(
(Xi − x)� h−1

)
Yi∑n

j=1K ((Xj − x)� h−1)
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